Li-Gen®

The Next Generation of Battery Technology

48 V 105 Ah Iron Phosphate (LiFePO4) Li-ion Battery

PN: Li48-105

Features

- Drop-in compatible for lead acid golfcart battery, maintenance free
- 200 A discharge; charges in 2 hours
- Safe: Lithium Iron Phosphate cells, no hazardous gases
- Thousands of cycles, to 100% DOD, under normal conditions
- Built-in protector BMS with cell balancing: over-charge, overdischarge, over-current and over-temperature
- ♦ Wide temperature range:-20 °C 60 °C
- Five-year limited warranty
- · Some battery components may be recycled or repurposed

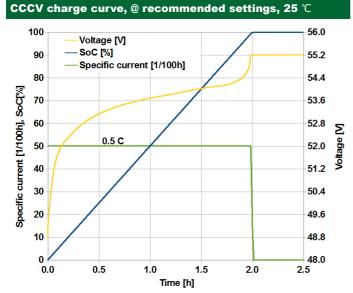
Applications

- ♦ UPS
- Mobility
- Electric Vehicle, E-bike, E-Rickshaw etc.
- Lighting
- Leisure and Marine

Product spe	cifications		Min	Nom	Max	
Electrical	Voltage	Open circuit, 2 hour relaxation	48.0	53.2	57.6	V
	Capacity	1/20 C		105		Ah
	Energy	1/20 C		5.54		kWh
	Internal resistance	25 °C		18		mΩ
	Cycle life	0.5C charging/discharging,25 °C, to 90% of nominal capacity		2000		Cycles
	Self discharge	25 ℃			3.5	% / month
Mechanical	Dimension LWH		310	x 272 x 282		mm
	Connection			M8 Stud		-
	Mass			42		Kg
	Ingress protection	Powder-coated steel enclosure		IP55		-
Operating co	onditions		Min	Nom	Max	
CCCV	Constant current	CC stage ("bulk")			52	A
charging	Peak current	10 s max			65	А
	Constant voltage {CV}	CV stage ("absorption"), until current drops below 5 A, 2 hr max	54.8	55.2	57.6	V
	Float voltage			53.6	54.0	V
	Temperature		-10		45	°C
Discharging	Continuous current				105	A
	Peak current	10 s max			210	А
	r our our one					
	Cut-off voltage			44.8		V
			-20	44.8	75	v °C

Li-Gen Limited Ballyduff House Ballyduff Thurles Co Tipperary Ireland Tel 00353 504 34111 email:info@li-gen.net

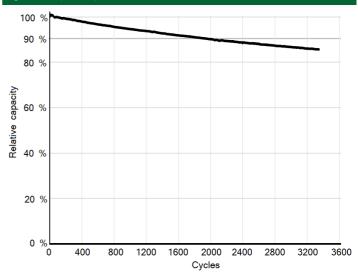
©2024 Li-Gen Limited, Ballyduff, Thurles, Co Tipperary, Ireland. All right reserved. Trademarks and logos are the property of Li-Gen Limited


Li-Gen®

The Next Generation of Battery Technology

48 V 105 Ah Iron Phosphate (LiFePO4) Li-ion Battery

PN: Li48-105



Battery care

- Storage:
 - ◆ Bring to ~50 % charge, then store in a cool, dry place
 - Do not drop
- Charging:
 - A CV stage that lasts too long degrades the battery rapidly
 - Stand-by applications: exceeding {CV} V degrades the battery
 - Charging is disabled below freezing; warm the battery first
 - Maximize capacity by regularly charging to the specified voltage
- Discharging:
 - If no voltage, the battery is off; charge it to wake it up

Cycle life, 25 °C, 0.5 C

System design

 Though it may oriented in any direction, upright use is preferable Connect no more than 4 Batteries in Parallel.
Do Not Connect in Series.

Refer to user manual for complete information.

Li-Gen Limited Ballyduff House Ballyduff Thurles Co Tipperary Ireland Tel 00353 504 34111 email:info@li-gen.net

©2024 Li-Gen Limited, Ballyduff, Thurles, Co Tipperary, Ireland. All right reserved. Trademarks and logos are the property of Li-Gen Limited

Li-Gen®

48 V 105 Ah Iron Phosphate (LiFePO4) Li-ion Battery

PN: Li48-105

erform	nance s	specif	icatio	ns*													Min	Nom	Max	
ectrical	E	Energy storage			ŀ	-hou	r dis	scharg	e, new								4.47			kWh
					ŀ	0-ho	ur d	ischar	ge, ne	w							5.59			kWh
					I	Derat	ing,	1 cycl	e per o	lay									-0.0164	%/day
					I	Derat	ing,	1 cycl	e ever	y 2 day	/S								-0.0123	%/day
							ing,	1 cycl	e ever	y week	í .								-0.0094	%/day
							Derating, not cycled												-0.0082	%/day
	F	Round-trip efficiency				-hou	r dis	scharg	e, 2-ho	our cha	arge, ne	w					96.5			%
					I	Derat	ing,	1 cycl	e per o	lay									-0.0055	%/day
					1	Derat	ing,	1 cycl	e ever	y 2 day	/S								-0.0041	%/day
					I	Derat	ing,	1 cycl	e ever	y week	í.								-0.0031	%/day
					[Derat	ing,	not cy	cled										-0.0027	%/day
	5	Self disc	charge		ł	Powe	red	off, 10	0 % S	oC to C) % So	C, new						2.3		years
					F	Powe	red	on, nc	load,	100 %	SoC to	0 % S	oC, nev	w				23		days
	٨	, <u>,</u>				cyc	les	, ≤ 0.												
								< n												
100	٨					сус	les	, ≤ 0.												
100						Cyc	les	, ≤ 0.												
							les	, ≤ 0.												
100								, ≤ 0.												
100 90 80			0 cycl	es le / we	eek			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es le / we	eek days			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, < 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70 60 60 40 30			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70 60 50 40 30 20			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												
100 90 80 70 60 50 40 30			0 cyc 1 cyc 1 cyc	es e / we	eek days			, ≤ 0.												

Li-Gen Limited Ballyduff House Ballyduff Thurles Co Tipperary Ireland Tel 00353 504 34111 email:info@li-gen.net

©2024 Li-Gen Limited, Ballyduff, Thurles, Co Tipperary, Ireland. All right reserved. Trademarks and logos are the property of Li-Gen Limited